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Correlated random band matrices: Localization-delocalization transitions
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We study the statistics of eigenvectors in correlated random band matrix models. These models are charac-
terized by two parameters, the bandwid@(N) of a HermitianN XN matrix and the correlation parameter
C(N) describing correlations of matrix elements along diagonal lines. The correlated band matrices show a
much richer phenomenology than models without correlation as soon as the correlation parameter scales
sufficiently fast with matrix size. In particular, f@&(N)~ N andC(N)~ /N, the model shows a localization-
delocalization transition of the quantum Hall type.

PACS numbes): 02.50-r, 73.23~b, 71.30+h

I. INTRODUCTION ric) spin-orbit interactions are known to display a LD transi-
tion (see, e.g.[7]). In all of these realistic matrix ensembles
In the theory of random Hermitian matricgl two robust  the statistics at criticality represents an unstable fixed point
types of statistics are found in the limit of infinite matrix size under increasing system siziee., matrix dimensioy) which
(denoted here as “thermodynamic limjt”First, the Wigner- means that any slight shift away from the critical value of the
Dyson statistics describing systems that become ergodic ianergy, say, will drive the system into one of the stable ma-
the thermodynamic limit and have an incompressible, corretrix ensembles, Wigner-Dyson for the delocalized states and
lated spectrum and Gaussian distributed, uncorrelated amplRoisson for localized states. The critical ensembles are char-
tudes of the corresponding eigenstdiese Fig. 1a)]. Since  acterized by correlated spectra, but with a finite compress-
we do not consider further symmetry constraints we focus orility. Furthermore, critical eigenstates are multifractal and
the matrix ensembles denoted as class A in the classificatidiie multifractal exponents are related to the compressibility
of [2]. A convenient representative of its ergodic limiting of the spectrunifor a review seg4]).
ensemble is given by the Gaussian unitary matrix ensemble It is desirable to study matrix ensembles with simple con-
GUE. The second robust statistics is the Poisson statisticd{ruction rules and to ask for the necessary ingredients in
with eigenstates, localized on certain basis sté#ge9, and order to have a LD transition. Also in quantum chaos the
with a compressible, uncorrelated spectr[see Fig. 1b)].  interestin crossover ensembles has gré8inin that context
Real complex quantum systems, represented by random Hehe Rosenzweig-Porter modél] was studied as a toy model
mitian matrices, can show a crossover between Wignerfor the crossover. It is defined as a simple superposition of a
Dyson and Poisson statistics or, in some cases, a true quakeissonian and a Wigner-Dyson matrix. It has been shown
tum phase transition with novel “critical” statistics. A well rigorously that, by choosing the superposition in an appro-
known example is the three-dimension@D) Anderson priate way, novel critical ensembles emerge, but the spectral
model (see Fig. 2 describing the motion of independent compressibility is identical to the Poisson ensemble and
electrons on a 3D lattice with random uncorrelated on-sitestates are not multifractdsee[10] and references thergin
disorder. Below a certain critical value of disorder, in the Another well studied matrix ensemble is that of random band
thermodynamic limit, all states at the energy band center armatrices(RBM) with uncorrelated elements. The bandwidth
infinitely extended(delocalizedl in space, while for larger B describes the number of diagonals with nonvanishing ele-
disorder all states are spatially localized. Instead of changingents. ForB~N®, with s>1/2, one recovers the Wigner-
the disorder, one can change the energy within the energpyson statistics. Such band matrix models have been dis-
band, keeping the disorder fixed at low values. Again, a trancussed in the context of the “quantum kicked rotor”
sition from localization(band tail$ to delocalization(band  problem[11] and have been studied extensively in a series of
centej occurs. It is worth mentioning that the average den-papers by Mirlin, Fyodorov, and otherdor review see
sity of stategDOS) is noncritical, i.e., it stays smooth across [12,13). It turned out that, in particular foB>1, all states
the localization-delocalization(LD) transition. Although are localized with a localization lengttin index spacg &
these statements are substantiated by analytical as well asB2. For fixed B one has therefore a crossover from
numerical work(for reviews sed3,4]), the special structure Wigner-Dyson to Poisson statistics [dgs taken from values
of this matrix ensemblécomposed of a sparse, but determin-much smaller tharB? to values much larger thaB?, and
istic matrix and a random diagonal mairixas prohibited, so B?/N is the relevant parameter for a scaling analysis of data.
far, a rigorous proof of these statements. Another wellSuperpositions of such random band matrices with random
known system with a transition from localized to critical diagonal matrices have been studied in the context of the
states is the two-dimension@D) quantum Hall systenffor ~ “two-interacting particle” problem(see, e.g.[14,15)); how-
reviews sed5,6]) which we will describe briefly later. Fur- ever, these ensembles do not show novel critical behavior as
thermore, several matrix ensembles modeling the motion ofompared to the Rosenzweig-Porter model.
2D disordered electrons undergoiftgne-reversal symmet- In fact, only a few simply designed matrix ensembles are

1063-651X/2000/6(6)/62789)/$15.00 PRE 61 6278 ©2000 The American Physical Society



PRE 61 CORRELATED RANDOM BAND MATRICES: ... 6279

BEC0oo0ooog0d ERECOORCOOmROOO
CoOmCoOoooaoD EOECOROCO000CEO0
SoooomooooaoD ONEECOO0000ED
i ][ ORI OECOCO .
SRR R OECOEREECOECOOOODO
Oo00PEooHonEn EOOOEEECOCODO00
o o || DDDDD...DDDDD
(b) OOOCOECEEECCO0
o _ _ _ HEE (EEn | | (e
FIG. 1. Visualization of typical random matrices obeying B0 nEE ]
Wi -D tatistic&), Poi tatisticd). The intensi -
resents he absolute valie of matr clements. o EEEmAEE B
known to become critical with multifractal critical statesee o] o ]|

[16,17), for example “power law” band matrix ensembles, kG, 2. visualization of a typical random matrix obeying the
where the strength dfincorrelatefimatrix elements falls off  statistics of a 3D Anderson model. The intensity represents the

in a power law fashion in the direction perpendicular to theapsolute value of matrix elements. The example shows a matrix
central diagonal. The critical cases occur for the power lavsection for a 3<3x 3 system.

behavior~x~1! of the typical absolute values of matrix ele-
ments[16,18. It is, however, important to notice a signifi- cally and that certain correlated disorder potentials were
cant difference to realistic critical ensembles: there is no LDshown to cause LD transitions in 1D. It is not obvious how to
transition within the spectrum; if and only if parameters areextend the method of22] to the case of CRBM models.
fixed to critical values all states are critical. Usually, correlations in matrix ensembles lead to serious
In this paper we study correlated random band matrixcomplications in analytical attacks. For example, in the field
(CRBM) ensembles and, with the assistance of numericatheoretic treatmentsee, e.g.[23]) of random matrix en-
calculations, argue that these ensembles can lead to a L&embles the absence of long-ranged correlations is essential
transition within the spectrum. The parame®iN)~N'that  to find appropriate field degrees of freedom that depend
describes the correlation of certain matrix elements is introsmoothly on a single site variable. In our CRBM models
duced for random band matrices. FB¢N)~ /N states are correlations are introduced by constraif@gsnumber of ma-
localized outside of the energy band center and a LD transitix elements are taken to be identicalhis may help to

tion at the energy band center occurs provided<ti 1. reduce complications in constructing a field theoretic ap-
A major motivation for studying these ensembles origi-proach for CRBM models.
nates from the theory of the integer quantum Hall effégt In Sec. Il we give a detailed definition of the CRBM and

The plateau to plateau transition in the quantum Hall effectdiscuss three alternative interpretations. The investigation of
can be captured in models of noninteracting 2D electrons ithe LD transition is carried out in Sec. Il by a multifractal

a strong magnetic field and a random potential, referred to asnalysis of states for an ensemble that is expected to fall into
the quantum Hall systeniQHS). In the one-band Landau the quantum Hall universality class. Our results are in favor
representation the Hamiltonian is represented as a randoof this expectation. The analysis is carried over to ensembles
matrix with two characteristic feature§) The matrix ele- where correlations are taken to extreme limits in Sec. IV. In
ments decay perpendicular to the main diagonal in a Gaus&ec. V we present our conclusions.

ian way. (i) No correlations exist between elements on dis-

tinct “nebendiagonal” lines, but Gaussian correlations exist Il. CORRELATED RANDOM BAND MATRIX MODEL

along each of the nebendiagonals. These features led to the

introduction of the “random Landau model(RLM) to Let the elements of aN X N Hermitian matrixH be writ-
study critical properties of QHS¢see, e.g.[19,5]). The tenas

original purpose of constructing the RLM was to avoid ex-

plicit calculations of matrix elements starting from a ran- Hu=Xqtiyw for 1>k, (1)
domly chosen disorder potential and to directly generate the
matrix elements as random numbers that fulfill the statistical H = V2%, 2

properties(i) and (ii). As will be explained in more detail
below, the corresponding CRBM model simplifies the RLM where all nonvanishing real numbexg ,y,, are taken from
further, inasmuch as a sharp bandwidth is introduced anthe same distributio® with vanishing mean and finite vari-
correlations along nebendiagonals are idealized and cut ofincec?. We take the symmetric and uniform distribution on
after a finite length. [—1,1] (¢?=1/3). With B,C being two integer numbers,
Recently, matrix ensembles with correlated matrix ele-called the “bandwidth” and the “correlation parameter,”
ments attracted some intergg20] in the context of the respectively, the correlated band matrix ensembles are de-
metal-insulator experiments in 2[21], for which strong fined by the following algorithn{i)—(iii) and are visualized
Coulomb interaction is believed to be a necessary ingredienin Fig. 3.
It is very interesting that if22] 1D models with correlated (i) Begin with the main diagonal dfi and draw a random
disorder potentials could, to a large extent, be solved analytinteger numbeN,<C, and the random numbes, from the
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FIG. 3. Visualization of a typical matrix of the correlated ran- - ’.\I/(Bfl—l)' The lattice Spacmglong j[he vylre,h, an.d thg
dom band matrix model. The intensity represents the absolute valdén't of t|me are taken to be 1. Tran_smons In one unit Of, time
of matrix elements. The example corresponds to matrix size are possible between channétsupling and along the wire
=13, bandwidthB=3, and correlation paramet&=5. (hopping. Sites are labeletsee Fig. % such that hopping is

possible at most over one lattice spacing along the wire.
distribution?. Take the firsN; values on the main diagonal Again, hopping(coupling is correlated over typically- C/2

equal toy2x,;. Then, dravx from the distribution  States, provided the difference between labels is identical. A
t ’ Nat 1N +1 less obvious interpretation of CRBM models arises when

quantum Hall systems are studied in a one band Landau
equal t0V2(Xy,+1,+1)- NOW, drawxy, c+1n,+c+1 from representation. A quantum Hall system is described by a
the distribution’? and take successivelg elements on the one-particle Hamiltonian of 2D electrorisharge— e, mass
main diagonal equal tG/EXNl+c+1,Nl+c+1. Continue with  m) in the presence of a strong perpendicular magnetic field
this procedure until the main diagonal is filled up. and a random potentid(x,y). In Landau gauge the Hamil-
(i) Now consider the next “nebendiagonal.” Its first ran- tonian reads

dom elementH ,=Xx,+1iy, and a random integer number
N,=<C are drawn. Set the firdt, elements of this nebendi-
agonal equal toH;,. The nextC elements on the same
nebendiagonal are taken equal to the random value

Hin,+1N,+ 21 and so on. where (,,p,) is the canonical momentum with respect to
(iii ) The procedure terminates after tBth nebendiagonal the Cartesian coordinates,{). For periodic boundary con-

(I—k=B) is filled up. All other matrix elementd - k>B) ditions in they direction(lengthL ) the kinetic energy forms

are set to zero. Finally, Hermiticity is installed by taking a highly degenerate harmonic oscillator problepy {s con-

P and take successivelg elements on the main diagonal

1
H= S [px+ (py+eBx)?]+V(xy), @

Hi-=Hp,. served that is diagonalized by Landau staféd] |n,l). Here
For C=1 the usual band matrix modelsandwidthB) of ~ Nn=0,1,2,3... labels the Landau energieE,=%w.(n
uncorrelated matrix elements are recover@dand B form  +1/2) (o.=eB/m cyclotron energy, andl=0,1,2 ... la-

the relevant parameters of the CRBM, while the value-a§  bels center coordinates of the degenerate Landau states. The
not significant—it just defines the energy units. For finiteLandau states are separated into plane waves iy theec-

C>1 the correlation alongnebendiagonals is a triangular tion with quantized momenturg, and into oscillator wave
function of rangeC and half widthC/2. Thus,C/2 is a typi-  functions centered &= —\?q,, where\ = Jh/(eB) is the

cal distance over which elements are correlated alongharacteristic “magnetic length.” As long as the typical val-
(nebendiagonals. The spectrum is always distributed in a
symmetric way around the cente=0 as a consequence of
the symmetry of the distributiof?.

In the following, we are going to discuss three possible
physical interpretations. The most obvious interpretation re-
lies on the site representatioh=(0,0, ...J=1,0,...,0).

In this representatiorl describes hopping of particles on a ]

1D chain of lengthL=N (lattice spacing=1) with a maxi- 10:0 0 0 000 0 0 O

mum distance of hopping equal & The average hopping

probability in one instant of timeé is (A=1, (---) denotes FIG. 5. Quasi-one-dimensional interpretation of correlated ran-

the ensemble average dom band matrices. Sites are labeled such that for a fixed cross
section of the wire all channels are filled up with sites, before one

Kk (t+ 1)) =0? for 0<|I—k|<B. (3)  proceeds to the next cross section. Hopping events along the wire

and couplings within each cross section are uncorrelated, if label

The correlation between matrix elements means that twdistances are distinct. For identical label distances they are corre-

hopping amplitudes are identical if the hopping distance idated over typicallyC/2 sites. In this examplB=3, C=2.
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diagonal due to the Gaussian decay of Landau states. For
disorder potentials with a spatial correlation lendgth\ the
decay sets in earlier, because the Landau states are orthogo-
A nal. A quantitative analysis show&ee [19,5]) that the
Gaussian bandwidth is

~ 1 JaN
B:E — €)
e0000000O0O0 4

X and the Gaussian correlation length algngbendiagonals

FIG. 6. Interpretation of correlated band matrices as quantuninS
Hall system. Bare states are interpreted as Landau states on a 2D

plane. The qualitative properties of Landau states are shown: plane C= ﬂ (10)

waves iny direction situated at center coordinae, extended in T

the x direction over approximately one magnetic lengthcorre-

sponding toN, neighboring states. Here B=1 is a parameter that is controlled by the potential
correlation lengtid,

ues of the random potential are much smaller than the cyclo-

tron energy, one can study the full eigenvalue problem of the _ Vd?+\? (11)

low-lying “Landau bands” approximately by restricting the p= N

Hilbert space to separate Landau leveldn particular, for

the lowest Landau level the Landau states read For finite and fixed valued,a in the thermodynamic limit,
B(N) and C(N) increase as/N to infinity. A matrix for

1 Xy (X—=X))? QHSs with the statistical properties described above is de-
(xy[h)= 7T1/4\/ﬁex 2 (P T o [ noted as the “random Landau matriXRLM) (see[5]).
Y (5) Our CRBM simulates the RLM inasmuch as it has the

same qualitative features of a finite bandwid@tand a cor-
A convenient recipe to study finite systems of lengtim the  relation length, being typicallC/2. The quantitative differ-
x direction is to use “Landau counting” of states, that is to ences are that in the CRBM the matrices have a sharp band-
take only those Landau states into account for which thgyidth B instead of a Gaussian bandwidBy and that the
center coordinateX fall into the interval[OL]. The total  correlation function is a triangle with a half wid@/2 in-

nhumber of states, for an aspect ratieL /L, is stead of a Gaussian with a half wid@. In the thermody-
— 2 namic limit, however, we expect that these differences
N=(a/2m)(L/A)" © should be insignificant for the statistics of eigenvalues and

By shifting the lowest Landau energy to zero, the eigenvalu&igenvectors, provided the parametB(&) andC(N) scale
problem is defined by the matrid,;=(k|V|l) which reads in the same way witlN as the paramete8(N) and C(N),
respectively. Note, however, that in the RLM the ratio

_ 2 2 ~ ~
e (HADEX) C(N)/B(N)= 2 is bounded from below by 1, while in the

Hy= J, dx V(x;AX)e~ ANI=X?2 - (7)

N CRBM model we are free to choose any value for
B(N),C(N).
- Ly/2 _ )
V(x;AX)= Lglf_L L3y V(x,y)eYaX, (8 Il MULTIFRACTALITY AND SPATIAL CORRELATIONS
Yy

, To study the LD properties of matrix ensembles numeri-
where X= (X +X)/2 andAX=X,— X, . These matrix ele- ca|ly one can follow a number of different strategies. The
ments form a randorN XN matrix, the elements of which ot efficient way is to analyze only the eigenvalue statis-
are composed by a Fourier transformation of the randomics. Although the eigenvalues encode most of the relevant
potential in they direction and a Gaussian weighted averag-information about LD properties, the statistics of wave func-
ing of the potential over a magnetic length in theirection.  tjon amplitudes is more direct. Localization, delocalization,
Crucial for the structure of the matrix is the fact that, within 3nq even criticality of states can be qualitatively distin-
the distance of one magnetic length a number ofN,  guished already by the inspection of plots of the squared
~N(N/L) different Landau states can be situatede Fig.  amplitudes of wave functiongsee, e.g., Fig. )7 Critical
6). Thus, for a constant aspect ratio, this number increases @gatesy(r) are characterized by having a multifractal distri-
N>\~\/N in the thermodynamic limit. This leads to correla- pytion of its squared amplitudes probé&|y(r)|?. This
tions between matrix elements along nebendiagonals Overﬂ)ectrum becomes independent of System size and is univer-
range ofN, states. This range increases when the disordesa| for all of the critical states in the thermodynamic limit
potential is correlated in real space over distances exceedingbr a review se¢25]) or, more generally, follows a univer-
the magnetic length. The correlation between matrix elesa| distribution(see[26]). In particular, the geometric mean

ments on distinc{nebendiagonals is negligible, since the s a convenient measure of a typical probability and scales as
correlator contains the superposition-eN, random phase

factors. The matrix elements decay perpendicular to the main prohy,= exp(In[prob(r)])~L ™, (12
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(a) amplitudes. From the linear regression procedure that allows
us to determinexy one cannot distinguish such behavior
from true multifractality, as long as the system sizes cannot
be made much larger than the localization length. Further-
more, one should distinguish between spatial, energy, and
ensemble averages. In practice, we first perform the spatial
average for a fixed wave function to determine the exponent
ap for a finite matrix sizeN by the box-counting method
(see, e.g.]29]). This can be done for many states in the
critical region (which has finite width for finiteN) and we
average over these states. Finally, an average over different
realizations(ensemble averagean be performed. It is not
obvious, that the order of these different procedures com-
mutes since the exponent fluctuates from state to state. The
question about the self-averaging of the fractal exponents
was recently addressed[ia6] and it was claimed that expo-
nents follow a universal scale independent distribution func-
tion in the thermodynamic limit rather than being self-
averaging. We do not investigate this question here. For our
finite systems the exponents are fluctuating anyway and we
consider averagetver typically 100 statgsas explained
above.

For a number of different models of QHSs the exponent
ag has been determined, e.gy=2.28+0.02 in[32]. Other
authors(e.g., [33]) find values between 2.270.1 and «y
=2.29+0.02. The largest system sizes studied were about
L~200\ leading to matrix dimensiond of about 10.

For the sake of a direct comparison of wave function plots
between our CRBM models and the RLM we took the 2D

o770 Landau representation of E(p) with a Landau counting for
an aspect rati@=1. The eigenvalues and eigenstates were
FIG. 7. Squared amplitudes of a localized staeand a critical  caculated numerically exploiting the band structure of the

state(b), in the correlated random band matrix model for the stan- atrices. To be as close as possible to a real QHS with an
dard quantum Hall case. States are represented in two-dimensiong pect r.atioawl and a short-ranged random potential

Landau representation. -
we took B(N)=B(N,a=1,8=1)=N/m and C(N)

where the deviationr,—d=0 of the fractal dimensiony, = (1/2)C(N,a=1,8=1)=(1/2)yN/7 (e.g., the largest ma-
from the Euclidean dimensictsignals multifractality and is ~ trices had parametefé= 6400, B=45, andC=90). We re-
the most sensitive critical exponent of the LD transition. Al-fer to this choice of parameters as the “standard quantum
though a critical state is extended all over the system, it1all case.”
fluctuates strongly and has large regions of low probability Our findings for the standard quantum Hall case of the
that results in the stronger decay of typical amplitudes a$RBM model can be summarized as follows. Almost all
compared to homogeneously extended states. A quantity thatates are localizefsee Fig. {a)]. Only those around the
is closely related tay, is the exponent; of long-ranged €nergy band centeE=0 are multifractally extendedsee
spatial correlationg prob(r)prob(0)~r~7 [27,28. It ful- Fig. 7(b)]. For finite N there is a small energy band of ex-
fills scaling relations to the fractal dimension of the secondended states with localization lengik=L. The energy band
moment of prob) [29], and also to the compressibility of Width of extended stated,., shrinks with increasingy with
the eigenvalue spectrui80] (see also[31]). As a crude & critical exponent related to the divergence of the localiza-
estimate(based on a log-normal approximatip29] to the  tion length at the band center. To determine this critical ex-
distribution of prob) one hag~2(ay—d). ponent it would be sufficient to determideg as a function of

In this work we focus on wave function statistics and thesystem size. Howeves ;. can be defined only by considering
determination ofey. One should, however, be careful when @an appropriate scaling variable, e.g., the participation ratio,
drawing conclusions from the calculation of fractal expo-that increases above some threshold value when the states
nents for finite matrix sizes. Such calculations should be agpecome extended. In finite systems scaling variables are
sisted by the inspection of states, and one should study th&rongly fluctuating and one has to consider distribution
dependence on the matrix site For example, states with functions and/or appropriate typical values. We did not try to
localization lengths that are small, but not very small com-calculate this exponent precisely, but only convinced ourself
pared to system size, tend to produce larger valuegpof that the typical numbers of clearly extended states were com-
because parts of the wave function have low amplitudesparable to those of realistic quantum Hall systems with
This can be seen easily in plots of the corresponding squareBi(N) =B(N), C(N)=2C(N).
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FIG. 9. Numerically obtained correlation exponenfg) (sym-
bols) in comparison with the data following from the scaling rela-
I tion (13) (line). Error bars are shown for two representative values.

0 20 40 60 80 100

FIG. 8. Multifractal exponenty, as a function of index label-
ing 100 extended states of a correlated random band matrix mode number of clear indications that correlated random band
The case(a) of vanishing correlation corresponds to the lower matrices, in the “standard quantum Hall” case, are true rep-
curve, the quantum Hall case to the middle curve, and the (se resentatives of the quantum Hall universality class.
of strongest correlation to the upper curve. The straight line indi- We close this section with an observation not directly
cates the average value in the standard quantum Hall case. relevant for the questions addressed in this paper, but which
may be relevant for those readers that like to perform nu-
merical calculations with the CRBM model. In realistic
The fluctuation ofa, determined by the box-counting for QHSs with an aspect rat@+ 1 one observes that a number
individual states can bee seen in Fig. 8. The average ovél the multifractal states tend to have an orientation along the
100 different extended states oNa= 6400 standard quantum direction of smaller width. This orientation effect has no in-
Hall case yieldsao=2.26+0.02. This value is close to the fluence on the asymptotic statistical properties of the wave

value ap=2.28+0.02 obtained by the same averaging pro-function amplitudes a# scales to=. Only corrections to
cedure for an original quantum Hall system [i82]. We scaling due to finite system sizes can be different for differ-

therefore conclude, that the CRBM shows indeed a LD tran€Nt aspeclt_ ratios. .Hglwevﬁi’ a?h aSPriCt 1at#91 will _|tr_1fl_u-
sition reminiscent of quantum Hall systems. It seems Iikerence scaling variables like the Thouless sensitivgy,
=Jde/A. It measures the change in energy due to a

that, in the thermodynamic limit, the critical behavior of o T I o _
CRBMs in the standard quantum Hall class is actually iolen_change from periodic to antiperiodic boundary conditions in

tical to that of th tum Hall uni ity ol b a given direction, relative to the mean level spacinglt is
Ical to that ot the quantum Hall universality class, ecauseexponentially small for localized states and typically of order

the essentiaN dependence of the relevant parameters, bandy ¢y, critically extended states. We calculated this quantity
width B(N)~ /N and correlation paramet@(N)~ N, are  for a realistic quantum Hall system. It has strong mesoscopic
identical to those of realistic QHSs in Landau representationyctuations (variance~ mean and found that the unique
So far the comparison of multifractal exponents wasmaximum of its typical values at the band center, der 1,
based on the wave function statistics without any referenceplits up into two maxima, foa# 1, symmetric around the
to spatial correlations. Therefore, a more ambitious compariband center. This behavior is related to the fact that those
son between the CRBM and a QHS concerns the criticalvave functions that start to be extended in the direction of
exponents of spatial correlations and their scaling relations temaller width are more sensitive to changes in the boundary
the multifractal exponents. In a multifractal state theor-  condition than those that have already huge localization
relator (protf(r) protf(0))~r ~X(@ has fractal dimension lengths and are uniformly extended in both directions. In the
CRBM model we observe a similar phenomenon. For the
standard quantum Hall case we actually found a tendency for
x(q)=2A(q)—A(2q), (13  an orientation into they direction [with Landau states as
defined in Eq.5) and Landau counting faa=1]. This be-
havior changes to an orientation in the opposite direction
whereA(q) are the usual fractal exponents of thenoments  under increasing>(N) by a factor ofO(1), keepingB(N)
(protfi(r))~L~ 2@ (for review sed4]). fixed. In contrast to a realistic QHS where we can calculate
We find for the spatial correlations of the standard quan & for a truly symmetric situationa=1, in the CRBM
tum Hall case th_e scaling exponents shown in Fig. 9. Theyyodel we do not knowa priori if the choice C/2=B is
are Compared with the data that follow from the Spectrun'hppropriate to Simu'ate a tru'y Symmetric Situatim}? 1.
A(qg) and Eq.(13). The spectrund (q) was calculated by the Because the identification of the half-width value of a trian-
box counting method. They satisfy, within the numerical un-gular correlation function with the half width of a Gaussian
certainties, the scaling relation E¢L3). Furthermore, the is not strict, taking a factor of order unity between them is
exponents are close to their values for critical states in realequally well justified. The same ambiguity is present in the
istic quantum Hall system$32], e.g., the exponent of jdentification of the bandwidtB with B. Any change irB, C
“anomalous diffusion”[28] is x(1)=0.4+0.1. We summa- by a factor of order unity can therefore lead to the orientation
rize this section by stating that our multifractal analysis giveseffect. As in realistic quantum Hall systems we also found
the splitting of the maximum in Thouless sensitivities in the
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standard quantum Hall case. This splitting effect may be fur- P

ther investigated. 0.0006
0.0005
0.0004
0.0003

. . . 0.0002 -
When the correlation parameter is fixed to a constant ‘|

C(N)=C, the CRBM will behave like an ordinary random o
band matrix whem>C,. This case is very well understood
(see[12,13) and one knows that a crossover from localiza-
tion to the Wigner-Dyson delocalization takes place as the °
bandwidthB is varied. The localization length in 1D inter-
pretation isé;p=cB? (c a constant of order unity Except

_forctjheﬂ:arlenelr_gytbancli)tills,_wh_ere Istatets ar(; stronger I?ﬁal- FIG. 10. Squared amplitudes of a typical state in the random
Ized, the locallzalion benavior IS almost unttorm Over ey, yayix model for situatiofe) with vanishing correlation be-

energy ban.d..lt is worth noting that the amplitudes of WaV&yeen matrix elements. The state is represented in the two-
functions within the central regiofwhere the amplitudes are gimensional Landau representation.

not exponentially smallare strongly fluctuating, but they are

not multifractal in the limit of largeB(N). The entire distri-

bution of amplitudes is, asymptotically iB, fixed by the the localization center, will slowly converge t@,=2 as
value of the ratiog= &,,/N=cB?(N)/N. This ratio is the B(N) increases further with\.

relevant scaling parameter and is denoted as “conductance.” Situation(b) deviates strongly from the usual uncorrelated
As we have seen in the preceding section, the behavior andom band matrix models. The elements on e@u
CRBM changes drastically when the correlation parametebendiagonal are constant, but uncorrelated for distiimet-
increases sufficiently fast withl. In the standard quantum bendiagonals. We denote them hy, wherem=0 labels the
Hall case, a LD transition takes place within the energymain diagonal and positivenegative mlabel the upper right
band. To get more insight into the role of the correlation(lower lef) lying nebendiagonals.

IV. TUNING THE CORRELATION PARAMETER C(N)

200

parameter we therefore studied two extreme casas: Had we setN=<x in the first place, we could solve the
C(N)=1, and(b) C(N)=N. In both cases we ke@(N) eigenvalue problem by Fourier transformation. Each hopping
~ N as in the standard quantum Hall case. event over a fixed distance would be translational invariant.

Situation (a) corresponds to the usual uncorrelated ran-Thus, the eigenstates, fdd=o, are plane wavesjqy(l)
dom band matrix models with a large localization length of=e' whereq is a quantum wave number that can take any
£1p~B?~L in 1D interpretation €010~ B~L’ in Q1D in-  real value. The corresponding eigenvalue is
terpretation and a constant “conductance” of order 3, " B
=¢1p/L=&qip/L' =const. This model haso interpretation i i
as a QHS, gince the rat@(N)/B(N)~N~2<1. For better Eq:m;w he'4"= h0+29‘{m§=‘,1 M. (14
comparison we used the same Landau representation as be-
fore and performed a multifractal analysis of the extendedn Landau representation the plane wavigl) transform
states by the same box-counting method as in the standaioto wave functionsir4(x,y) that are plane waves in the

guantum Hall case. direction, centered at a center coordinatt@z—)\zq, and
Our findings in situation@ can be summarized as fol- have a width of a magnetic length in tiyedirection.
lows. All states behave similar within the bafgeicept for For any finiteN, however, such a solution is not possible

those in the far tailsThe states are not uniformly extended, unless periodic boundary conditions are implemented in the
but are confined to strips with a width of about half the site representation. To implement them into our band matrix
system size(see Fig. 1D Within that strip the states are models we have to add B? matrix elements in the upper
extended and they fluctuate strongly in a “grassy” way.right (and lower lefi corners of the matrix. This would vio-
They do not show the self-similar regions of low amplitudelate the band structure. We see that, for any filtethe

like typical multifractal states. This behavior is compatible correlated band matrix brakes the translational invariance of
with the 1D (or quasi-1D interpretation of the uncorrelated hopping events, and it is not obvious that the states restore
random band matrix with a localization length of the order ofthis symmetry whem goes to infinity. Actually, our finiteN

L (L") and a conductance of order unity. We calculated, forresults indicate that the states will not be plane waves in the
N=6400B =45, the exponent}?®’°=11~2 14 (see Fig. 8  center of the bangsee Fig. 11 Furthermore, a simple per-
This value must be taken with care, as the states were ndtrbative treatment shows that the omission of thB? ele-
extended over the full system. They are localized to an aregents in the corners cannot be neglected in the INnit .

of about half the system size. Thus, the regions of exponen- The CRBM in situation(b) also allows for an interpreta-
tially small amplitudes outside the localization center lead tation as a quantum Hall system, sin€¢N)/B(N)~ N>1.
valuesay>2. Taking amplitudes from only the localization As follows from Egs. (9)—(11) the potential correlation
center reduces the averageay, but fluctuations from state length d~N* and the aspect ratio is larga~+/N. This

to state are strong. We therefore expect thgtmeasured in  translates to the scaling with system sizas
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power of the length in the direction. Thus, the “effective
volume” is 14, By this reasoningro(C=N)—2 will be, in

the a=1 representation, two times larger than in the strip
representation, and we may expect that we should find
al=N~2.54 by box counting in the 2D Landau representa-
tion with a=1. Indeed, this estimate is compatible with our
findings as displayed in Fig. 8.

200

V. CONCLUSIONS

We have studied a unique type of matrix models, the cor-
related random band matrices. We used numerical diagonal-
FIG. 11. Squared amplitudes of a typical state in the randorization and performed a multifractal analysis to analyze the
band matrix model for situatiob) with the strongest correlation localization-delocalization properties of such matrix models
between matrix elements. The state is represented in the twdn the thermodynamic limit of infinite matrix size.
dimensional Landau representation. The parameters of correlated band matrices are the band-
width B and the correlation parameté&: We offered three
interpretationsii) independent quantum particles on a one-
d~L~NY4 L,=aL~L%. (15  dimensional chain with correlated hoppir(g) independent
quantum particles on a quasi-one-dimensional strip with cor-
related coupling of channels, arii ) in some range of its
The CRBM in situation(b) thus represents a long quantum parameters the models resemble two-dimensional quantum
Hall strip Wherel_y/Lfv(L/}\)2 and the random potential can Hall systems. FoB~C~ /N a transition from localized to
be thought of as being smooth over a distance of the width critical states in the band center occurs, and the correspond-
With periodic boundary conditions in the direction one ing critical exponents are close to those of real quantum Hall
would again conclude that eigenstates are plane waves in tlsystems. Furthermore, we found the following qualitative be-
x direction, labeled by different center coordinateg, (qis  havior when keeping the bandwidth\/N constant: A reduc-
an integer times /L) in they direction, and the eigenval- tion of correlations suppresses multifractalitg., criticality)
ues Eq would be determined by the value of the randomat the band center and finally, f@=1, the ordinary non-
potential at center coordinad,. This scenario is also con- critical random band matrix ensemble is reached which
sistent with Eq.(14) because the Fourier transform of the shows localization length&~ B2. Increasing correlations be-
random potential av/(Y,) yields the matrix elements,,  yondC~ \/N, the transition to critical states in the band cen-
[see also Eq(8)]. In the absence of periodic boundary con- ter remains; however, their multifractality seems to be more
ditions the situation changes. For energies far from the bangronounced. The fractal critical exponent for extreme corre-
center one expects that the corresponding eigenstates are |gtions, C(N)=N, turned out to be compatible with a heu-
calized on equipotential contours of the random potential angistic estimate.
are centered at some val¥g. However, close to the energy  Therefore, our numerical results suggest that the corre-
band center eigenstates become extended and one typi¢ated band matrix models show transitions from localization
eigenstate is shown in Fig. 11. Although this state has ao critical delocalization on approaching the energy band
preferred orientation in the direction it is by no means center, provided the bandwidth scales IiBéN)~\/N and
localized to a small region in thg direction. It fluctuates the correlation parameter scales liggN)~N! with 1/2<t
strongly, it has nonvanishing values all over the system, and 1 |t should be pointed out that correlations lead to stron-
it also shows large areas of low probability. Therefore, theger |ocalization off the band center, while they lead to criti-
multifractal exponenty, is larger than in the standard quan- ¢g| delocalization at the band center.
tum Hall situation. We hope that our work initiates more studies on the en-
Let us try to give heuristic arguments of how to estimatesemble of correlated random band matrices with a general
the value ofa,. For that purpose we recall that, quite gener-pehavior ofB(N)~NS, C(N)~N¢, wheres,t may vary be-
ally £q1p is of the order of the number of transverse modesween 0 and 1, and to reach solid statements about the local-
N times the relevant scattering lendttfor a discussion see, jzation behavior in the thermodynamic limit. We also like to
e.g.[4]). In our situatiorN.=N andl~d~L. Therefore, the  point out that the “standard quantum Hall case” of the cor-
quasi-1D localization length is estimated tobé", and it related random band matrix models is not only a simple ma-
is much larger thar., [34]. We may thus assume that the trix realization for quantum Hall systems but has a very in-
state is critical and has, in the strip representation, a valugeresting distinction from other representative models for the
ag~2.26 when the fractal analysis is restricted to sizes muclyuantum Hall universality clasgor an overview over such
larger thand~L. Recall that we have chosen the Landaumodels sed¢35]). The correlated random band matrix does
representation corresponding to an aspect @tid.. There-  not incorporate any handedness related to the magnetic field.
fore, the value ofxy found by box counting in that represen- This handedness is essential in all other representative mod-
tation must be different. The box counting method usesls that allow for the existence of extended states. In the
squares of sizé? in the 2D Landau representation with  correlated random band matrix model, however, the connec-
=1. This corresponds toectangular boxesn the strip rep- tion to a quantum Hall system goes via the Landau represen-
resentation, where the lengthyrdirection scales as the third tation, which takes the handedness into account. Fortunately,
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