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Correlated random band matrices: Localization-delocalization transitions
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We study the statistics of eigenvectors in correlated random band matrix models. These models are charac-
terized by two parameters, the bandwidthB(N) of a HermitianN3N matrix and the correlation parameter
C(N) describing correlations of matrix elements along diagonal lines. The correlated band matrices show a
much richer phenomenology than models without correlation as soon as the correlation parameter scales
sufficiently fast with matrix size. In particular, forB(N);AN andC(N);AN, the model shows a localization-
delocalization transition of the quantum Hall type.

PACS number~s!: 02.50.2r, 73.23.2b, 71.30.1h
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I. INTRODUCTION

In the theory of random Hermitian matrices@1# two robust
types of statistics are found in the limit of infinite matrix siz
~denoted here as ‘‘thermodynamic limit’’!. First, the Wigner-
Dyson statistics describing systems that become ergod
the thermodynamic limit and have an incompressible, co
lated spectrum and Gaussian distributed, uncorrelated am
tudes of the corresponding eigenstates@see Fig. 1~a!#. Since
we do not consider further symmetry constraints we focus
the matrix ensembles denoted as class A in the classifica
of @2#. A convenient representative of its ergodic limitin
ensemble is given by the Gaussian unitary matrix ensem
GUE. The second robust statistics is the Poisson statis
with eigenstates, localized on certain basis states~sites!, and
with a compressible, uncorrelated spectrum@see Fig. 1~b!#.
Real complex quantum systems, represented by random
mitian matrices, can show a crossover between Wign
Dyson and Poisson statistics or, in some cases, a true q
tum phase transition with novel ‘‘critical’’ statistics. A we
known example is the three-dimensional~3D! Anderson
model ~see Fig. 2! describing the motion of independe
electrons on a 3D lattice with random uncorrelated on-
disorder. Below a certain critical value of disorder, in t
thermodynamic limit, all states at the energy band center
infinitely extended~delocalized! in space, while for larger
disorder all states are spatially localized. Instead of chang
the disorder, one can change the energy within the ene
band, keeping the disorder fixed at low values. Again, a tr
sition from localization~band tails! to delocalization~band
center! occurs. It is worth mentioning that the average de
sity of states~DOS! is noncritical, i.e., it stays smooth acro
the localization-delocalization~LD! transition. Although
these statements are substantiated by analytical as we
numerical work~for reviews see@3,4#!, the special structure
of this matrix ensemble~composed of a sparse, but determ
istic matrix and a random diagonal matrix! has prohibited, so
far, a rigorous proof of these statements. Another w
known system with a transition from localized to critic
states is the two-dimensional~2D! quantum Hall system~for
reviews see@5,6#! which we will describe briefly later. Fur
thermore, several matrix ensembles modeling the motion
2D disordered electrons undergoing~time-reversal symmet
PRE 611063-651X/2000/61~6!/6278~9!/$15.00
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ric! spin-orbit interactions are known to display a LD tran
tion ~see, e.g.,@7#!. In all of these realistic matrix ensemble
the statistics at criticality represents an unstable fixed p
under increasing system size~i.e., matrix dimension!, which
means that any slight shift away from the critical value of t
energy, say, will drive the system into one of the stable m
trix ensembles, Wigner-Dyson for the delocalized states
Poisson for localized states. The critical ensembles are c
acterized by correlated spectra, but with a finite compre
ibility. Furthermore, critical eigenstates are multifractal a
the multifractal exponents are related to the compressib
of the spectrum~for a review see@4#!.

It is desirable to study matrix ensembles with simple co
struction rules and to ask for the necessary ingredient
order to have a LD transition. Also in quantum chaos t
interest in crossover ensembles has grown@8#. In that context
the Rosenzweig-Porter model@9# was studied as a toy mode
for the crossover. It is defined as a simple superposition
Poissonian and a Wigner-Dyson matrix. It has been sho
rigorously that, by choosing the superposition in an app
priate way, novel critical ensembles emerge, but the spec
compressibility is identical to the Poisson ensemble a
states are not multifractal~see@10# and references therein!.
Another well studied matrix ensemble is that of random ba
matrices~RBM! with uncorrelated elements. The bandwid
B describes the number of diagonals with nonvanishing e
ments. ForB;Ns, with s.1/2, one recovers the Wigner
Dyson statistics. Such band matrix models have been
cussed in the context of the ‘‘quantum kicked roto
problem@11# and have been studied extensively in a series
papers by Mirlin, Fyodorov, and others~for review see
@12,13#!. It turned out that, in particular forB@1, all states
are localized with a localization length~in index space! j
;B2. For fixed B one has therefore a crossover fro
Wigner-Dyson to Poisson statistics asN is taken from values
much smaller thanB2 to values much larger thanB2, and
B2/N is the relevant parameter for a scaling analysis of da
Superpositions of such random band matrices with rand
diagonal matrices have been studied in the context of
‘‘two-interacting particle’’ problem~see, e.g.,@14,15#!; how-
ever, these ensembles do not show novel critical behavio
compared to the Rosenzweig-Porter model.

In fact, only a few simply designed matrix ensembles a
6278 ©2000 The American Physical Society
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PRE 61 6279CORRELATED RANDOM BAND MATRICES: . . .
known to become critical with multifractal critical states~see
@16,17#!, for example ‘‘power law’’ band matrix ensemble
where the strength of~uncorrelated! matrix elements falls off
in a power law fashion in the direction perpendicular to t
central diagonal. The critical cases occur for the power
behavior;x21 of the typical absolute values of matrix ele
ments@16,18#. It is, however, important to notice a signifi
cant difference to realistic critical ensembles: there is no
transition within the spectrum; if and only if parameters a
fixed to critical values all states are critical.

In this paper we study correlated random band ma
~CRBM! ensembles and, with the assistance of numer
calculations, argue that these ensembles can lead to a
transition within the spectrum. The parameterC(N);Nt that
describes the correlation of certain matrix elements is in
duced for random band matrices. ForB(N);AN states are
localized outside of the energy band center and a LD tra
tion at the energy band center occurs provided 1/2<t<1.

A major motivation for studying these ensembles ori
nates from the theory of the integer quantum Hall effect@6#.
The plateau to plateau transition in the quantum Hall eff
can be captured in models of noninteracting 2D electron
a strong magnetic field and a random potential, referred t
the quantum Hall system~QHS!. In the one-band Landau
representation the Hamiltonian is represented as a ran
matrix with two characteristic features.~i! The matrix ele-
ments decay perpendicular to the main diagonal in a Ga
ian way.~ii ! No correlations exist between elements on d
tinct ‘‘nebendiagonal’’ lines, but Gaussian correlations ex
along each of the nebendiagonals. These features led to
introduction of the ‘‘random Landau model’’~RLM! to
study critical properties of QHSs~see, e.g.,@19,5#!. The
original purpose of constructing the RLM was to avoid e
plicit calculations of matrix elements starting from a ra
domly chosen disorder potential and to directly generate
matrix elements as random numbers that fulfill the statist
properties~i! and ~ii !. As will be explained in more detai
below, the corresponding CRBM model simplifies the RL
further, inasmuch as a sharp bandwidth is introduced
correlations along nebendiagonals are idealized and cu
after a finite length.

Recently, matrix ensembles with correlated matrix e
ments attracted some interest@20# in the context of the
metal-insulator experiments in 2D@21#, for which strong
Coulomb interaction is believed to be a necessary ingredi
It is very interesting that in@22# 1D models with correlated
disorder potentials could, to a large extent, be solved ana

FIG. 1. Visualization of typical random matrices obeyin
Wigner-Dyson statistics~a!, Poisson statistics~b!. The intensity rep-
resents the absolute value of matrix elements.
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cally and that certain correlated disorder potentials w
shown to cause LD transitions in 1D. It is not obvious how
extend the method of@22# to the case of CRBM models
Usually, correlations in matrix ensembles lead to serio
complications in analytical attacks. For example, in the fi
theoretic treatment~see, e.g.,@23#! of random matrix en-
sembles the absence of long-ranged correlations is esse
to find appropriate field degrees of freedom that depe
smoothly on a single site variable. In our CRBM mode
correlations are introduced by constraints~a number of ma-
trix elements are taken to be identical!. This may help to
reduce complications in constructing a field theoretic a
proach for CRBM models.

In Sec. II we give a detailed definition of the CRBM an
discuss three alternative interpretations. The investigatio
the LD transition is carried out in Sec. III by a multifracta
analysis of states for an ensemble that is expected to fall
the quantum Hall universality class. Our results are in fa
of this expectation. The analysis is carried over to ensem
where correlations are taken to extreme limits in Sec. IV.
Sec. V we present our conclusions.

II. CORRELATED RANDOM BAND MATRIX MODEL

Let the elements of anN3N Hermitian matrixH be writ-
ten as

Hkl5xkl1 iykl for l .k, ~1!

Hkk5A2xkk , ~2!

where all nonvanishing real numbersxkl ,ykl are taken from
the same distributionP with vanishing mean and finite vari
ances2. We take the symmetric and uniform distribution o
@21,1# (s251/3). With B,C being two integer numbers
called the ‘‘bandwidth’’ and the ‘‘correlation parameter,
respectively, the correlated band matrix ensembles are
fined by the following algorithm~i!–~iii ! and are visualized
in Fig. 3.

~i! Begin with the main diagonal ofH and draw a random
integer numberN1<C, and the random numberx11 from the

FIG. 2. Visualization of a typical random matrix obeying th
statistics of a 3D Anderson model. The intensity represents
absolute value of matrix elements. The example shows a ma
section for a 33333 system.
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6280 PRE 61MARTIN JANSSEN AND KRYSTIAN PRACZ
distributionP. Take the firstN1 values on the main diagona
equal toA2x11. Then, drawxN111,N111 from the distribution

P and take successivelyC elements on the main diagon
equal toA2(xN111,N111). Now, drawxN11C11,N11C11 from

the distributionP and take successivelyC elements on the
main diagonal equal toA2xN11C11,N11C11. Continue with
this procedure until the main diagonal is filled up.

~ii ! Now consider the next ‘‘nebendiagonal.’’ Its first ran
dom elementH125x121 iy12 and a random integer numbe
N2<C are drawn. Set the firstN2 elements of this nebendi
agonal equal toH12. The next C elements on the sam
nebendiagonal are taken equal to the random va
HN211,N212, and so on.

~iii ! The procedure terminates after theBth nebendiagona
( l 2k5B) is filled up. All other matrix elements (l 2k.B)
are set to zero. Finally, Hermiticity is installed by takin
Hl .k5Hk, l* .

For C51 the usual band matrix models~bandwidthB) of
uncorrelated matrix elements are recovered.C and B form
the relevant parameters of the CRBM, while the value ofs is
not significant—it just defines the energy units. For fin
C.1 the correlation along~neben!diagonals is a triangula
function of rangeC and half widthC/2. Thus,C/2 is a typi-
cal distance over which elements are correlated al
~neben!diagonals. The spectrum is always distributed in
symmetric way around the centerE50 as a consequence o
the symmetry of the distributionP.

In the following, we are going to discuss three possi
physical interpretations. The most obvious interpretation
lies on the site representationu l &5(0,0, . . . ,l 51,0, . . . ,0).
In this representation,H describes hopping of particles on
1D chain of lengthL5N ~lattice spacing51) with a maxi-
mum distance of hopping equal toB. The average hopping
probability in one instant of timet is (\51, ^¯& denotes
the ensemble average!

^ z^k~ t !u l ~ t11!& z2&5s2 for 0<u l 2ku<B. ~3!

The correlation between matrix elements means that
hopping amplitudes are identical if the hopping distance

FIG. 3. Visualization of a typical matrix of the correlated ra
dom band matrix model. The intensity represents the absolute v
of matrix elements. The example corresponds to matrix sizeN
513, bandwidthB53, and correlation parameterC55.
e

g
a

e
-

o
s

equal, and provided the hopping starts at sites the dista
between which is less than typicallyC/2 ~see Fig. 4!.

An alternative interpretation results when theN sites are
arranged in a quasi-one-dimensional~Q1D! geometry with
Nc5B11 parallel ‘‘channels’’ in a ‘‘wire’’ of length L8
5N/(B11). The lattice spacingalong the wire,\, and the
unit of time are taken to be 1. Transitions in one unit of tim
are possible between channels~coupling! and along the wire
~hopping!. Sites are labeled~see Fig. 5! such that hopping is
possible at most over one lattice spacing along the w
Again, hopping~coupling! is correlated over typically;C/2
states, provided the difference between labels is identica
less obvious interpretation of CRBM models arises wh
quantum Hall systems are studied in a one band Lan
representation. A quantum Hall system is described b
one-particle Hamiltonian of 2D electrons~charge2e, mass
m) in the presence of a strong perpendicular magnetic fielB
and a random potentialV(x,y). In Landau gauge the Hamil
tonian reads

H5
1

2m
@px

21~py1eBx!2#1V~x,y!, ~4!

where (px ,py) is the canonical momentum with respect
the Cartesian coordinates (x,y). For periodic boundary con
ditions in they direction~lengthLy) the kinetic energy forms
a highly degenerate harmonic oscillator problem (py is con-
served! that is diagonalized by Landau states@24# un,l &. Here
n50,1,2,3, . . . labels the Landau energiesEn5\vc(n
11/2) (vc5eB/m cyclotron energy!, and l 50,1,2, . . . la-
bels center coordinates of the degenerate Landau states
Landau states are separated into plane waves in they direc-
tion with quantized momentumql and into oscillator wave
functions centered atXl52l2ql , wherel5Ah/(eB) is the
characteristic ‘‘magnetic length.’’ As long as the typical va

ue

FIG. 4. One-dimensional interpretation of correlated band m
trices. Hopping events for distinct hopping distances are unco
lated. Hopping events for the same hopping distance are corre
over typicallyC/2 nearest neighbors. In this exampleB>6, C>3.

FIG. 5. Quasi-one-dimensional interpretation of correlated r
dom band matrices. Sites are labeled such that for a fixed c
section of the wire all channels are filled up with sites, before o
proceeds to the next cross section. Hopping events along the
and couplings within each cross section are uncorrelated, if la
distances are distinct. For identical label distances they are co
lated over typicallyC/2 sites. In this exampleB53, C>2.
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PRE 61 6281CORRELATED RANDOM BAND MATRICES: . . .
ues of the random potential are much smaller than the cy
tron energy, one can study the full eigenvalue problem of
low-lying ‘‘Landau bands’’ approximately by restricting th
Hilbert space to separate Landau levelsn. In particular, for
the lowest Landau level the Landau states read

^x,yu l &5
1

p1/4AlLy

expH 2 i
Xly

l2 J expH 2
~x2Xl !

2

2l2 J .

~5!

A convenient recipe to study finite systems of lengthL in the
x direction is to use ‘‘Landau counting’’ of states, that is
take only those Landau states into account for which
center coordinatesXl fall into the interval@0,L#. The total
number of states, for an aspect ratioa5Ly /L, is

N5~a/2p!~L/l!2. ~6!

By shifting the lowest Landau energy to zero, the eigenva
problem is defined by the matrixHkl5^kuVu l & which reads

Hkl5
e2(1/4l2)(DX)2

Apl
E

2`

`

dx Ṽ~x;DX!e2 ~1/l2!(x2X)2
, ~7!

Ṽ~x;DX![Ly
21E

2Ly/2

Ly/2

dy V~x,y!eiyDX/l2
, ~8!

whereX5(Xk1Xl)/2 andDX5Xk2Xl . These matrix ele-
ments form a randomN3N matrix, the elements of which
are composed by a Fourier transformation of the rand
potential in they direction and a Gaussian weighted avera
ing of the potential over a magnetic length in thex direction.
Crucial for the structure of the matrix is the fact that, with
the distance of one magnetic lengthl, a number ofNl

;N(l/L) different Landau states can be situated~see Fig.
6!. Thus, for a constant aspect ratio, this number increase
Nl;AN in the thermodynamic limit. This leads to correl
tions between matrix elements along nebendiagonals ov
range ofNl states. This range increases when the disor
potential is correlated in real space over distances excee
the magnetic length. The correlation between matrix e
ments on distinct~neben!diagonals is negligible, since th
correlator contains the superposition of;Nl random phase
factors. The matrix elements decay perpendicular to the m

FIG. 6. Interpretation of correlated band matrices as quan
Hall system. Bare states are interpreted as Landau states on
plane. The qualitative properties of Landau states are shown: p
waves iny direction situated at center coordinateXl , extended in
the x direction over approximately one magnetic lengthl corre-
sponding toNl neighboring states.
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diagonal due to the Gaussian decay of Landau states.
disorder potentials with a spatial correlation lengthd@l the
decay sets in earlier, because the Landau states are orth
nal. A quantitative analysis shows~see @19,5#! that the
Gaussian bandwidth is

B̃5
1

b
AaN

p
~9!

and the Gaussian correlation length along~neben!diagonals
is

C̃5bAaN

p
. ~10!

Hereb>1 is a parameter that is controlled by the potent
correlation lengthd,

b[
Ad21l2

l
. ~11!

For finite and fixed valuesd,a in the thermodynamic limit,
B̃(N) and C̃(N) increase asAN to infinity. A matrix for
QHSs with the statistical properties described above is
noted as the ‘‘random Landau matrix’’~RLM! ~see@5#!.

Our CRBM simulates the RLM inasmuch as it has t
same qualitative features of a finite bandwidthB and a cor-
relation length, being typicallyC/2. The quantitative differ-
ences are that in the CRBM the matrices have a sharp b
width B instead of a Gaussian bandwidthB̃, and that the
correlation function is a triangle with a half widthC/2 in-
stead of a Gaussian with a half widthC̃. In the thermody-
namic limit, however, we expect that these differenc
should be insignificant for the statistics of eigenvalues a
eigenvectors, provided the parametersB(N) andC(N) scale
in the same way withN as the parametersB̃(N) and C̃(N),
respectively. Note, however, that in the RLM the rat
C̃(N)/B̃(N)5b2 is bounded from below by 1, while in the
CRBM model we are free to choose any value f
B(N),C(N).

III. MULTIFRACTALITY AND SPATIAL CORRELATIONS

To study the LD properties of matrix ensembles nume
cally, one can follow a number of different strategies. T
most efficient way is to analyze only the eigenvalue sta
tics. Although the eigenvalues encode most of the relev
information about LD properties, the statistics of wave fun
tion amplitudes is more direct. Localization, delocalizatio
and even criticality of states can be qualitatively dist
guished already by the inspection of plots of the squa
amplitudes of wave functions~see, e.g., Fig. 7!. Critical
statesc(r ) are characterized by having a multifractal dist
bution of its squared amplitudes prob(r )[uc(r )u2. This
spectrum becomes independent of system size and is un
sal for all of the critical states in the thermodynamic lim
~for a review see@25#! or, more generally, follows a univer
sal distribution~see@26#!. In particular, the geometric mea
is a convenient measure of a typical probability and scale

probtyp5 exp̂ ln@prob~r !#&;L2a0, ~12!

m
2D
ne
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where the deviationa02d>0 of the fractal dimensiona0
from the Euclidean dimensiond signals multifractality and is
the most sensitive critical exponent of the LD transition. A
though a critical state is extended all over the system
fluctuates strongly and has large regions of low probabi
that results in the stronger decay of typical amplitudes
compared to homogeneously extended states. A quantity
is closely related toa0 is the exponenth of long-ranged
spatial correlationŝ prob(r )prob(0)&;r 2h @27,28#. It ful-
fills scaling relations to the fractal dimension of the seco
moment of prob(r ) @29#, and also to the compressibility o
the eigenvalue spectrum@30# ~see also@31#!. As a crude
estimate~based on a log-normal approximation@29# to the
distribution of prob) one hash'2(a02d).

In this work we focus on wave function statistics and t
determination ofa0. One should, however, be careful whe
drawing conclusions from the calculation of fractal exp
nents for finite matrix sizes. Such calculations should be
sisted by the inspection of states, and one should study
dependence on the matrix sizeN. For example, states with
localization lengths that are small, but not very small co
pared to system size, tend to produce larger values ofa0
because parts of the wave function have low amplitud
This can be seen easily in plots of the corresponding squ

FIG. 7. Squared amplitudes of a localized state~a!, and a critical
state~b!, in the correlated random band matrix model for the st
dard quantum Hall case. States are represented in two-dimens
Landau representation.
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amplitudes. From the linear regression procedure that all
us to determinea0 one cannot distinguish such behavi
from true multifractality, as long as the system sizes can
be made much larger than the localization length. Furth
more, one should distinguish between spatial, energy,
ensemble averages. In practice, we first perform the sp
average for a fixed wave function to determine the expon
a0 for a finite matrix sizeN by the box-counting method
~see, e.g.,@29#!. This can be done for many states in th
critical region ~which has finite width for finiteN) and we
average over these states. Finally, an average over diffe
realizations~ensemble average! can be performed. It is no
obvious, that the order of these different procedures co
mutes since the exponent fluctuates from state to state.
question about the self-averaging of the fractal expone
was recently addressed in@26# and it was claimed that expo
nents follow a universal scale independent distribution fu
tion in the thermodynamic limit rather than being se
averaging. We do not investigate this question here. For
finite systems the exponents are fluctuating anyway and
consider averages~over typically 100 states! as explained
above.

For a number of different models of QHSs the expon
a0 has been determined, e.g.,a052.2860.02 in @32#. Other
authors~e.g., @33#! find values between 2.2760.1 anda0

52.2960.02. The largest system sizes studied were ab
L'200l leading to matrix dimensionsN of about 104.

For the sake of a direct comparison of wave function pl
between our CRBM models and the RLM we took the 2
Landau representation of Eq.~5! with a Landau counting for
an aspect ratioa51. The eigenvalues and eigenstates w
calculated numerically exploiting the band structure of t
matrices. To be as close as possible to a real QHS with
aspect ratioa'1 and a short-ranged random potenti

we took B(N)5B̃(N,a51,b51)5AN/p and C(N)

5(1/2)C̃(N,a51,b51)5(1/2)AN/p ~e.g., the largest ma
trices had parametersN56400, B545, andC590). We re-
fer to this choice of parameters as the ‘‘standard quan
Hall case.’’

Our findings for the standard quantum Hall case of
CRBM model can be summarized as follows. Almost
states are localized@see Fig. 7~a!#. Only those around the
energy band centerE50 are multifractally extended@see
Fig. 7~b!#. For finite N there is a small energy band of ex
tended states with localization lengthj>L. The energy band
width of extended states,Dc , shrinks with increasingN with
a critical exponent related to the divergence of the locali
tion length at the band center. To determine this critical
ponent it would be sufficient to determineDc as a function of
system size. However,Dc can be defined only by considerin
an appropriate scaling variable, e.g., the participation ra
that increases above some threshold value when the s
become extended. In finite systems scaling variables
strongly fluctuating and one has to consider distribut
functions and/or appropriate typical values. We did not try
calculate this exponent precisely, but only convinced ours
that the typical numbers of clearly extended states were c
parable to those of realistic quantum Hall systems w
B̃(N)5B(N), C̃(N)52C(N).

-
nal



r
ov

e
ro

an
el
of
en
s
n

io
a
nc
ar
ic
s

an
he
um

n

ea
f

e

and
ep-

tly
hich
nu-
ic
er
the
n-
ave

er-

in

er
tity
pic

ose
of
ary
ion
the
the
for

ion

ate

n-
n
is

he

ion
nd

d
er
e
d

a-
es.

PRE 61 6283CORRELATED RANDOM BAND MATRICES: . . .
The fluctuation ofa0 determined by the box-counting fo
individual states can bee seen in Fig. 8. The average
100 different extended states of aN56400 standard quantum
Hall case yieldsa052.2660.02. This value is close to th
value a052.2860.02 obtained by the same averaging p
cedure for an original quantum Hall system in@32#. We
therefore conclude, that the CRBM shows indeed a LD tr
sition reminiscent of quantum Hall systems. It seems lik
that, in the thermodynamic limit, the critical behavior
CRBMs in the standard quantum Hall class is actually id
tical to that of the quantum Hall universality class, becau
the essentialN dependence of the relevant parameters, ba
width B(N);AN and correlation parameterC(N);AN, are
identical to those of realistic QHSs in Landau representat

So far the comparison of multifractal exponents w
based on the wave function statistics without any refere
to spatial correlations. Therefore, a more ambitious comp
son between the CRBM and a QHS concerns the crit
exponents of spatial correlations and their scaling relation
the multifractal exponents. In a multifractal state theq cor-
relator ^probq(r )probq(0)&;r 2x(q) has fractal dimension

x~q!52D~q!2D~2q!, ~13!

whereD(q) are the usual fractal exponents of theq moments
^probq(r )&;L2D(q) ~for review see@4#!.

We find for the spatial correlations of the standard qu
tum Hall case the scaling exponents shown in Fig. 9. T
are compared with the data that follow from the spectr
D(q) and Eq.~13!. The spectrumD(q) was calculated by the
box counting method. They satisfy, within the numerical u
certainties, the scaling relation Eq.~13!. Furthermore, the
exponents are close to their values for critical states in r
istic quantum Hall systems@32#, e.g., the exponent o
‘‘anomalous diffusion’’@28# is x(1)50.460.1. We summa-
rize this section by stating that our multifractal analysis giv

FIG. 8. Multifractal exponenta0 as a function of indexI label-
ing 100 extended states of a correlated random band matrix mo
The case~a! of vanishing correlation corresponds to the low
curve, the quantum Hall case to the middle curve, and the cas~b!
of strongest correlation to the upper curve. The straight line in
cates the average value in the standard quantum Hall case.
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a number of clear indications that correlated random b
matrices, in the ‘‘standard quantum Hall’’ case, are true r
resentatives of the quantum Hall universality class.

We close this section with an observation not direc
relevant for the questions addressed in this paper, but w
may be relevant for those readers that like to perform
merical calculations with the CRBM model. In realist
QHSs with an aspect ratioaÞ1 one observes that a numb
of the multifractal states tend to have an orientation along
direction of smaller width. This orientation effect has no i
fluence on the asymptotic statistical properties of the w
function amplitudes asN scales to`. Only corrections to
scaling due to finite system sizes can be different for diff
ent aspect ratios. However, an aspect ratioaÞ1 will influ-
ence scaling variables like the Thouless sensitivitygTh
5d«/D. It measures the change in energyd« due to a
change from periodic to antiperiodic boundary conditions
a given direction, relative to the mean level spacingD. It is
exponentially small for localized states and typically of ord
1 for critically extended states. We calculated this quan
for a realistic quantum Hall system. It has strong mesosco
fluctuations~variance; mean! and found that the unique
maximum of its typical values at the band center, fora51,
splits up into two maxima, foraÞ1, symmetric around the
band center. This behavior is related to the fact that th
wave functions that start to be extended in the direction
smaller width are more sensitive to changes in the bound
condition than those that have already huge localizat
lengths and are uniformly extended in both directions. In
CRBM model we observe a similar phenomenon. For
standard quantum Hall case we actually found a tendency
an orientation into they direction @with Landau states as
defined in Eq.~5! and Landau counting fora51]. This be-
havior changes to an orientation in the opposite direct
under increasingC(N) by a factor ofO(1), keepingB(N)
fixed. In contrast to a realistic QHS where we can calcul
B̃,C̃ for a truly symmetric situation,a51, in the CRBM
model we do not knowa priori if the choice C/25B is
appropriate to simulate a truly symmetric situation,a51.
Because the identification of the half-width value of a tria
gular correlation function with the half width of a Gaussia
is not strict, taking a factor of order unity between them
equally well justified. The same ambiguity is present in t
identification of the bandwidthB with B̃. Any change inB, C
by a factor of order unity can therefore lead to the orientat
effect. As in realistic quantum Hall systems we also fou
the splitting of the maximum in Thouless sensitivities in t

el.

i-

FIG. 9. Numerically obtained correlation exponentsz(q) ~sym-
bols! in comparison with the data following from the scaling rel
tion ~13! ~line!. Error bars are shown for two representative valu
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standard quantum Hall case. This splitting effect may be
ther investigated.

IV. TUNING THE CORRELATION PARAMETER C„N…

When the correlation parameter is fixed to a const
C(N)[C0 the CRBM will behave like an ordinary random
band matrix whenN@C0. This case is very well understoo
~see@12,13#! and one knows that a crossover from localiz
tion to the Wigner-Dyson delocalization takes place as
bandwidthB is varied. The localization length in 1D inter
pretation isj1D5cB2 (c a constant of order unity!. Except
for the far energy band tails, where states are stronger lo
ized, the localization behavior is almost uniform over t
energy band. It is worth noting that the amplitudes of wa
functions within the central region~where the amplitudes ar
not exponentially small! are strongly fluctuating, but they ar
not multifractal in the limit of largeB(N). The entire distri-
bution of amplitudes is, asymptotically inB, fixed by the
value of the ratiog5j1D /N5cB2(N)/N. This ratio is the
relevant scaling parameter and is denoted as ‘‘conductan
As we have seen in the preceding section, the behavio
CRBM changes drastically when the correlation parame
increases sufficiently fast withN. In the standard quantum
Hall case, a LD transition takes place within the ener
band. To get more insight into the role of the correlati
parameter we therefore studied two extreme cases:~a!
C(N)51, and ~b! C(N)5N. In both cases we keptB(N)
;AN as in the standard quantum Hall case.

Situation ~a! corresponds to the usual uncorrelated ra
dom band matrix models with a large localization length
j1D;B2;L in 1D interpretation (jQ1D;B;L8 in Q1D in-
terpretation! and a constant ‘‘conductance’’ of order 1,g
5j1D /L5jQ1D/L85const. This model hasno interpretation
as a QHS, since the ratioC(N)/B(N);N21/2!1. For better
comparison we used the same Landau representation a
fore and performed a multifractal analysis of the extend
states by the same box-counting method as in the stan
quantum Hall case.

Our findings in situation~a! can be summarized as fo
lows. All states behave similar within the band~except for
those in the far tails! The states are not uniformly extende
but are confined to strips with a width of about half t
system size~see Fig. 10!. Within that strip the states ar
extended and they fluctuate strongly in a ‘‘grassy’’ wa
They do not show the self-similar regions of low amplitu
like typical multifractal states. This behavior is compatib
with the 1D ~or quasi-1D! interpretation of the uncorrelate
random band matrix with a localization length of the order
L (L8) and a conductance of order unity. We calculated,
N56400,B545, the exponenta0

[2D/C51]'2.14 ~see Fig. 8!.
This value must be taken with care, as the states were
extended over the full system. They are localized to an a
of about half the system size. Thus, the regions of expon
tially small amplitudes outside the localization center lead
valuesa0.2. Taking amplitudes from only the localizatio
center reduces the average ofa0, but fluctuations from state
to state are strong. We therefore expect thata0, measured in
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the localization center, will slowly converge toa052 as
B(N) increases further withN.

Situation~b! deviates strongly from the usual uncorrelat
random band matrix models. The elements on each~ne-
ben!diagonal are constant, but uncorrelated for distinct~ne-
ben!diagonals. We denote them byhm wherem50 labels the
main diagonal and positive~negative! m label the upper right
~lower left! lying nebendiagonals.

Had we setN5` in the first place, we could solve th
eigenvalue problem by Fourier transformation. Each hopp
event over a fixed distance would be translational invaria
Thus, the eigenstates, forN5`, are plane wavescq( l )
5eiql whereq is a quantum wave number that can take a
real value. The corresponding eigenvalue is

Eq5 (
m52`

`

hmeiqm5h012R (
m51

B

hmeiqm. ~14!

In Landau representation the plane wavescq( l ) transform
into wave functionscq(x,y) that are plane waves in thex
direction, centered at a center coordinateYq52l2q, and
have a width of a magnetic length in they direction.

For any finiteN, however, such a solution is not possib
unless periodic boundary conditions are implemented in
site representation. To implement them into our band ma
models we have to add;B2 matrix elements in the uppe
right ~and lower left! corners of the matrix. This would vio
late the band structure. We see that, for any finiteN, the
correlated band matrix brakes the translational invariance
hopping events, and it is not obvious that the states res
this symmetry whenN goes to infinity. Actually, our finiteN
results indicate that the states will not be plane waves in
center of the band~see Fig. 11!. Furthermore, a simple per
turbative treatment shows that the omission of the;B2 ele-
ments in the corners cannot be neglected in the limitN→`.

The CRBM in situation~b! also allows for an interpreta
tion as a quantum Hall system, sinceC(N)/B(N);AN.1.
As follows from Eqs. ~9!–~11! the potential correlation
length d;N1/4 and the aspect ratio is large,a;AN. This
translates to the scaling with system sizeL as

FIG. 10. Squared amplitudes of a typical state in the rand
band matrix model for situation~a! with vanishing correlation be-
tween matrix elements. The state is represented in the t
dimensional Landau representation.
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d;L;N1/4, Ly5aL;L3. ~15!

The CRBM in situation~b! thus represents a long quantu
Hall strip whereLy /L;(L/l)2 and the random potential ca
be thought of as being smooth over a distance of the widtL.
With periodic boundary conditions in thex direction one
would again conclude that eigenstates are plane waves in
x direction, labeled byN different center coordinatesYq (q is
an integer times 2p/L) in the y direction, and the eigenval
ues Eq would be determined by the value of the rando
potential at center coordinateYq . This scenario is also con
sistent with Eq.~14! because the Fourier transform of th
random potential atV(Yq) yields the matrix elementshm
@see also Eq.~8!#. In the absence of periodic boundary co
ditions the situation changes. For energies far from the b
center one expects that the corresponding eigenstates a
calized on equipotential contours of the random potential
are centered at some valueYq . However, close to the energ
band center eigenstates become extended and one ty
eigenstate is shown in Fig. 11. Although this state ha
preferred orientation in thex direction it is by no means
localized to a small region in they direction. It fluctuates
strongly, it has nonvanishing values all over the system,
it also shows large areas of low probability. Therefore,
multifractal exponenta0 is larger than in the standard qua
tum Hall situation.

Let us try to give heuristic arguments of how to estima
the value ofa0. For that purpose we recall that, quite gen
ally jQ1D is of the order of the number of transverse mod
Nc times the relevant scattering lengthl ~for a discussion see
e.g.,@4#!. In our situationNc5N andl'd;L. Therefore, the
quasi-1D localization length is estimated to be;Ly

5/3, and it
is much larger thanLy @34#. We may thus assume that th
state is critical and has, in the strip representation, a va
a0'2.26 when the fractal analysis is restricted to sizes m
larger thand;L. Recall that we have chosen the Land
representation corresponding to an aspect ratioa51. There-
fore, the value ofa0 found by box counting in that represen
tation must be different. The box counting method us
squares of sizel 2 in the 2D Landau representation witha
51. This corresponds torectangular boxesin the strip rep-
resentation, where the length iny direction scales as the thir

FIG. 11. Squared amplitudes of a typical state in the rand
band matrix model for situation~b! with the strongest correlation
between matrix elements. The state is represented in the
dimensional Landau representation.
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power of the length in thex direction. Thus, the ‘‘effective
volume’’ is l 4. By this reasoninga0(C5N)22 will be, in
the a51 representation, two times larger than in the st
representation, and we may expect that we should
a0

[C5N]'2.54 by box counting in the 2D Landau represen
tion with a51. Indeed, this estimate is compatible with o
findings as displayed in Fig. 8.

V. CONCLUSIONS

We have studied a unique type of matrix models, the c
related random band matrices. We used numerical diago
ization and performed a multifractal analysis to analyze
localization-delocalization properties of such matrix mod
in the thermodynamic limit of infinite matrix size.

The parameters of correlated band matrices are the b
width B and the correlation parameterC. We offered three
interpretations:~i! independent quantum particles on a on
dimensional chain with correlated hopping,~ii ! independent
quantum particles on a quasi-one-dimensional strip with c
related coupling of channels, and~iii ! in some range of its
parameters the models resemble two-dimensional quan
Hall systems. ForB;C;AN a transition from localized to
critical states in the band center occurs, and the corresp
ing critical exponents are close to those of real quantum H
systems. Furthermore, we found the following qualitative b
havior when keeping the bandwidth;AN constant: A reduc-
tion of correlations suppresses multifractality~i.e., criticality!
at the band center and finally, forC51, the ordinary non-
critical random band matrix ensemble is reached wh
shows localization lengthsj;B2. Increasing correlations be
yondC;AN, the transition to critical states in the band ce
ter remains; however, their multifractality seems to be m
pronounced. The fractal critical exponent for extreme cor
lations,C(N)5N, turned out to be compatible with a heu
ristic estimate.

Therefore, our numerical results suggest that the co
lated band matrix models show transitions from localizat
to critical delocalization on approaching the energy ba
center, provided the bandwidth scales likeB(N);AN and
the correlation parameter scales likeC(N);Nt with 1/2<t
<1. It should be pointed out that correlations lead to stro
ger localization off the band center, while they lead to cr
cal delocalization at the band center.

We hope that our work initiates more studies on the
semble of correlated random band matrices with a gen
behavior ofB(N);Ns, C(N);Nt, wheres,t may vary be-
tween 0 and 1, and to reach solid statements about the lo
ization behavior in the thermodynamic limit. We also like
point out that the ‘‘standard quantum Hall case’’ of the co
related random band matrix models is not only a simple m
trix realization for quantum Hall systems but has a very
teresting distinction from other representative models for
quantum Hall universality class~for an overview over such
models see@35#!. The correlated random band matrix do
not incorporate any handedness related to the magnetic fi
This handedness is essential in all other representative m
els that allow for the existence of extended states. In
correlated random band matrix model, however, the conn
tion to a quantum Hall system goes via the Landau repres
tation, which takes the handedness into account. Fortuna

o-
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6286 PRE 61MARTIN JANSSEN AND KRYSTIAN PRACZ
the question of localization and delocalization is not
stricted to that representation. In the correlated band ma
model the correlation of matrix elements is the key for t
quantum Hall transition. It would be very interesting to co
struct a manageable field theoretic formulation for the co
lated random band matrix model. This may be possible w
taking advantage of the fact that the correlations are given
constraints which may be included by Lagrangian multip
ers.
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